Present-day heat flow model of Mars

  • New paper/Nuevo artítulo: Parro, L. M., Jiménez-Díaz, A., Mansilla, F. & Ruiz, J. Present-day heat flow model of Mars. Sci. Rep. 7, 45629, DOI: 10.1038/srep45629 (2017). Link: http://www.nature.com/articles/srep45629 / PDF

Abstract in english: Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m−2, with an average value of 19 mW m−2. Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7–0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic.

Present-day surface heat flow model for Mars (sampled on a 2° × 2° grid), constructed by scaling heat flow variations related to variations in crustal thickness and topography, assuming constant mantle heat flow, and using the heat flow obtained for the North Polar Region from the effective elastic thickness as an anchoring value.

Compilation of present-day Urey ratios obtained for Mars for several convective history models compared with our results.

Abstract en español: Hasta la adquisición de mediciones in situ, el estudio del flujo témico actual de Marte debe basarse en métodos indirectos, que se basan principalmente en la relación entre el estado térmico de la litosfera y su resistencia mecánica, o sobre modelos teóricos de evolución interna. Aquí presentamos un modelo global de primer orden para el flujo térmico superficial de Marte en la actualidad. Este modelo está basado en la producción de calor radiogénico de la corteza y el manto, en el escalado de las variaciones del flujo térmico derivadas del espesor de la corteza y las variaciones topográficas, y en el flujo térmico derivado del espesor elástico efectivo de la litosfera bajo la región del Polo Norte de Marte. En nuestro modelo preferente se alcanzan valores de flujo térmico que varían entre 14 y 25 mW m−2, y un valor promedio de 19 mW m−2. Resultados similares (aunque aproximadamente un diez por ciento más altos) se obtienen si usamos el flujo térmico basado en la resistencia litosférica de la región del Polo Sur. Además, expresando nuestros resultados en términos de la relación de Urey (la relación entre la producción total de calor interno y la pérdida total de calor a través de la superficie), estimamos valores cercanos a 0.7-0.75, lo que indica una contribución moderada del enfriamiento secular al flujo térmico de Marte (consistente con los bajos valores de flujo térmico deducidos de la resistencia de la litosfera), a menos que las abundancias de los elementos productores de calor en Marte sean subcondríticos.

Tres lugares de aterrizaje para Mars2020

Se acaban de seleccionar, tres lugares de aterrizaje para la nueva misión de la NASA, Mars 2020, que llevará un nuevo rover a la superficie de Marte. Los tres lugares elegidos han sido:
-Northeast Syrtis: correspondiente a una parte de la superficie del planeta muy antigua.
-Jezero crater: que albergaba un antiguo lago marciano.
-Columbia Hills: ya explorado anteriormente por el rover Spirit (NASA).

Esta nueva misión, que está prevista para su lanzamiento en julio del año 2020, tiene como objetivos evaluar la geología de la zona de aterrizaje y su habitabilidad; así como la búsqueda de signos de antigua vida marciana. También evaluará los recursos y peligros que pueda tener el planeta de cara a futuras exploraciones humanas. Incluso, se percibe la idea de preparar una colección de muestras rocosas para su posible y futura, misión de retorno a la Tierra.

Habrá que seguirle la pista a esta gran misión que seguirá los pasos de sus antecesores, los rovers Spirit, Opportunity y Curiosity (todos ellos de la NASA).

Más información en la nota de prensa del Jet Propulsion Laboratory (JPL/NASA):
http://www.jpl.nasa.gov/news/news.php?feature=6744

*Crédito de la imagen de portada y de la noticia: NASA